Package: scTenifoldKnk 1.0.2
scTenifoldKnk: In-Silico Knockout Experiments from Single-Cell Gene Regulatory Networks
A workflow based on 'scTenifoldNet' to perform in-silico knockout experiments using single-cell RNA sequencing (scRNA-seq) data from wild-type (WT) control samples as input. First, the package constructs a single-cell gene regulatory network (scGRN) and knocks out a target gene from the adjacency matrix of the WT scGRN by setting the gene’s outdegree edges to zero. Then, it compares the knocked out scGRN with the WT scGRN to identify differentially regulated genes, called virtual-knockout perturbed genes, which are used to assess the impact of the gene knockout and reveal the gene’s function in the analyzed cells.
Authors:
scTenifoldKnk_1.0.2.tar.gz
scTenifoldKnk_1.0.2.zip(r-4.5)scTenifoldKnk_1.0.2.zip(r-4.4)scTenifoldKnk_1.0.2.zip(r-4.3)
scTenifoldKnk_1.0.2.tgz(r-4.4-any)scTenifoldKnk_1.0.2.tgz(r-4.3-any)
scTenifoldKnk_1.0.2.tar.gz(r-4.5-noble)scTenifoldKnk_1.0.2.tar.gz(r-4.4-noble)
scTenifoldKnk_1.0.2.tgz(r-4.4-emscripten)scTenifoldKnk_1.0.2.tgz(r-4.3-emscripten)
scTenifoldKnk.pdf |scTenifoldKnk.html✨
scTenifoldKnk/json (API)
# Install 'scTenifoldKnk' in R: |
install.packages('scTenifoldKnk', repos = c('https://cailab-tamu.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cailab-tamu/sctenifoldknk/issues
functional-genomicsgene-functiongene-knockoutgene-regulatory-networkvirtual-knockout-experiments
Last updated 2 years agofrom:a15ea4806b. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | NOTE | Nov 04 2024 |
R-4.5-linux | NOTE | Nov 04 2024 |
R-4.4-win | NOTE | Nov 04 2024 |
R-4.4-mac | NOTE | Nov 04 2024 |
R-4.3-win | NOTE | Nov 04 2024 |
R-4.3-mac | NOTE | Nov 04 2024 |
Exports:scTenifoldKnk
Dependencies:latticeMASSMatrixpbapplyRcppRcppEigenRhpcBLASctlRSpectrascTenifoldNet
Readme and manuals
Help Manual
Help page | Topics |
---|---|
scTenifoldKNK | scTenifoldKnk |