Package: scTenifoldNet 1.3

Daniel Osorio

scTenifoldNet: Construct and Compare scGRN from Single-Cell Transcriptomic Data

A workflow based on machine learning methods to construct and compare single-cell gene regulatory networks (scGRN) using single-cell RNA-seq (scRNA-seq) data collected from different conditions. Uses principal component regression, tensor decomposition, and manifold alignment, to accurately identify even subtly shifted gene expression programs. See <doi:10.1016/j.patter.2020.100139> for more details.

Authors:Daniel Osorio [aut, cre], Yan Zhong [aut, ctb], Guanxun Li [aut, ctb], Jianhua Huang [aut, ctb], James Cai [aut, ctb, ths]

scTenifoldNet_1.3.tar.gz
scTenifoldNet_1.3.zip(r-4.5)scTenifoldNet_1.3.zip(r-4.4)scTenifoldNet_1.3.zip(r-4.3)
scTenifoldNet_1.3.tgz(r-4.4-any)scTenifoldNet_1.3.tgz(r-4.3-any)
scTenifoldNet_1.3.tar.gz(r-4.5-noble)scTenifoldNet_1.3.tar.gz(r-4.4-noble)
scTenifoldNet_1.3.tgz(r-4.4-emscripten)scTenifoldNet_1.3.tgz(r-4.3-emscripten)
scTenifoldNet.pdf |scTenifoldNet.html
scTenifoldNet/json (API)

# Install 'scTenifoldNet' in R:
install.packages('scTenifoldNet', repos = c('https://cailab-tamu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cailab-tamu/sctenifoldnet/issues

On CRAN:

differential-regulation-analysisgene-regulatory-networksmanifold-alignmentsingle-celltensor-decomposition

5.61 score 21 stars 1 packages 64 scripts 246 downloads 8 exports 8 dependencies

Last updated 2 years agofrom:de53dc2b2f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:cpmNormalizationdRegulationmakeNetworksmanifoldAlignmentpcNetscQCscTenifoldNettensorDecomposition

Dependencies:latticeMASSMatrixpbapplyRcppRcppEigenRhpcBLASctlRSpectra