Package: scTenifoldNet 1.3
Daniel Osorio
scTenifoldNet: Construct and Compare scGRN from Single-Cell Transcriptomic Data
A workflow based on machine learning methods to construct and compare single-cell gene regulatory networks (scGRN) using single-cell RNA-seq (scRNA-seq) data collected from different conditions. Uses principal component regression, tensor decomposition, and manifold alignment, to accurately identify even subtly shifted gene expression programs. See <doi:10.1016/j.patter.2020.100139> for more details.
Authors:
scTenifoldNet_1.3.tar.gz
scTenifoldNet_1.3.zip(r-4.5)scTenifoldNet_1.3.zip(r-4.4)scTenifoldNet_1.3.zip(r-4.3)
scTenifoldNet_1.3.tgz(r-4.4-any)scTenifoldNet_1.3.tgz(r-4.3-any)
scTenifoldNet_1.3.tar.gz(r-4.5-noble)scTenifoldNet_1.3.tar.gz(r-4.4-noble)
scTenifoldNet_1.3.tgz(r-4.4-emscripten)scTenifoldNet_1.3.tgz(r-4.3-emscripten)
scTenifoldNet.pdf |scTenifoldNet.html✨
scTenifoldNet/json (API)
# Install 'scTenifoldNet' in R: |
install.packages('scTenifoldNet', repos = c('https://cailab-tamu.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cailab-tamu/sctenifoldnet/issues
differential-regulation-analysisgene-regulatory-networksmanifold-alignmentsingle-celltensor-decomposition
Last updated 2 years agofrom:de53dc2b2f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | OK | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
R-4.4-win | OK | Oct 31 2024 |
R-4.4-mac | OK | Oct 31 2024 |
R-4.3-win | OK | Oct 31 2024 |
R-4.3-mac | OK | Oct 31 2024 |
Exports:cpmNormalizationdRegulationmakeNetworksmanifoldAlignmentpcNetscQCscTenifoldNettensorDecomposition
Dependencies:latticeMASSMatrixpbapplyRcppRcppEigenRhpcBLASctlRSpectra